Academic research is increasingly cross-disciplinary and collaborative, between and within institutions. In this context, what is the role and relevance of an individual's spatial position on a campus? We examine the collaboration patterns of faculty at the Massachusetts Institute of Technology, through their academic output (papers and patents), and their organizational structures (institutional affiliation and spatial configuration) over a 10-year time span. An initial comparison of output types reveals: 1. diverging trends in the composition of collaborative teams over time (size, faculty versus non-faculty, etc.); and 2. substantively different patterns of cross-building and cross-disciplinary collaboration. We then construct a multi-layered network of authors, and find two significant features of collaboration on campus: 1. a network topology and community structure that reveals spatial versus institutional collaboration bias; and 2. a persistent relationship between proximity and collaboration, well fit with an exponential decay model. This relationship is consistent for both papers and patents, and present also in exclusively cross-disciplinary work. These insights contribute an architectural dimension to the field of scientometrics, and take a first step toward empirical space-planning policy that supports collaboration within institutions.

An Exploration of Collaborative Scientific Production at MIT through Spatial Organization and Institutional Affiliation

P Santi;
2017

Abstract

Academic research is increasingly cross-disciplinary and collaborative, between and within institutions. In this context, what is the role and relevance of an individual's spatial position on a campus? We examine the collaboration patterns of faculty at the Massachusetts Institute of Technology, through their academic output (papers and patents), and their organizational structures (institutional affiliation and spatial configuration) over a 10-year time span. An initial comparison of output types reveals: 1. diverging trends in the composition of collaborative teams over time (size, faculty versus non-faculty, etc.); and 2. substantively different patterns of cross-building and cross-disciplinary collaboration. We then construct a multi-layered network of authors, and find two significant features of collaboration on campus: 1. a network topology and community structure that reveals spatial versus institutional collaboration bias; and 2. a persistent relationship between proximity and collaboration, well fit with an exponential decay model. This relationship is consistent for both papers and patents, and present also in exclusively cross-disciplinary work. These insights contribute an architectural dimension to the field of scientometrics, and take a first step toward empirical space-planning policy that supports collaboration within institutions.
2017
Istituto di informatica e telematica - IIT
Social Network Analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact