The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

THz Time-Domain Spectroscopy for Tokamak plasma diagnostics, International Conference on Fusion Reactor Diagnostics

F Causa;
2014

Abstract

The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.
2014
Istituto di fisica del plasma - IFP - Sede Milano
____
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact