Phytoextraction is a low-cost technology with negligible environmental impacts. A major issue at the field scale is the heterogeneity of contaminant concentration since the entire site needs to be treated evenly even though zones may need different incisiveness in the treatment. The concentration ratio (C-shoot/C-soil) is generally used to evaluate plant species performance and it includes for simplicity an assumption of linearity in the uptake behavior, although deviation from linearity has been observed in several studies. This work describes a phytoextraction feasibility test, conducted at a greenhouse scale for the remediation of an arsenic-contaminated site. Since a feasibility test should also provide an uptake model that accounts for plant growth in heterogeneous areas, the investigation focused on defining the uptake behavior of the various selected species growing in a site with homogeneous soil properties, but with considerable differences in arsenic concentration. Among the many models selectable to describe the soil-to-plant transfer, the Freundlich-like approach was tested. While remaining easy to handle, the non-linear model selected proves to be adequate to predict the arsenic uptake despite the complex contamination considered, thus allowing a more realistic prediction of the potential of a field-scale phytoremediation procedure.
Applicability of a Freundlich-Like Model for Plant Uptake at an Industrial Contaminated Site with a High Variable Arsenic Concentration
Pedron Francesca;Grifoni Martina;Barbafieri Meri;Petruzzelli Gianniantonio;Rosellini Irene;
2017
Abstract
Phytoextraction is a low-cost technology with negligible environmental impacts. A major issue at the field scale is the heterogeneity of contaminant concentration since the entire site needs to be treated evenly even though zones may need different incisiveness in the treatment. The concentration ratio (C-shoot/C-soil) is generally used to evaluate plant species performance and it includes for simplicity an assumption of linearity in the uptake behavior, although deviation from linearity has been observed in several studies. This work describes a phytoextraction feasibility test, conducted at a greenhouse scale for the remediation of an arsenic-contaminated site. Since a feasibility test should also provide an uptake model that accounts for plant growth in heterogeneous areas, the investigation focused on defining the uptake behavior of the various selected species growing in a site with homogeneous soil properties, but with considerable differences in arsenic concentration. Among the many models selectable to describe the soil-to-plant transfer, the Freundlich-like approach was tested. While remaining easy to handle, the non-linear model selected proves to be adequate to predict the arsenic uptake despite the complex contamination considered, thus allowing a more realistic prediction of the potential of a field-scale phytoremediation procedure.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.