Well-balanced schemes, nowadays mostly developed for both hyperbolic and kinetic equations, are extended in order to handle linear parabolic equations, too. By considering the variational solution of the resulting stationary boundary-value problem, a simple criterion of uniqueness is singled out: the C1 regularity at all knots of the computational grid. Being easy to convert into a finite-difference scheme, a well-balanced discretization is deduced by defining the discrete time-derivative as the defect of C1 regularity at each node. This meets with schemes formerly introduced in the literature relying on so-called L-spline interpolation of discrete values. Various monotonicity, consistency and asymptotic-preserving properties are established, especially in the under-resolved vanishing viscosity limit. Practical experiments illustrate the outcome of such numerical methods.

L-Splines and Viscosity Limits forWell-Balanced Schemes Acting on Linear Parabolic Equations

Laurent Gosse
2018

Abstract

Well-balanced schemes, nowadays mostly developed for both hyperbolic and kinetic equations, are extended in order to handle linear parabolic equations, too. By considering the variational solution of the resulting stationary boundary-value problem, a simple criterion of uniqueness is singled out: the C1 regularity at all knots of the computational grid. Being easy to convert into a finite-difference scheme, a well-balanced discretization is deduced by defining the discrete time-derivative as the defect of C1 regularity at each node. This meets with schemes formerly introduced in the literature relying on so-called L-spline interpolation of discrete values. Various monotonicity, consistency and asymptotic-preserving properties are established, especially in the under-resolved vanishing viscosity limit. Practical experiments illustrate the outcome of such numerical methods.
2018
Istituto Applicazioni del Calcolo ''Mauro Picone''
Constant/Line Perturbation method
Fundamental system of solutions
L-spline
Monotone well-balanced scheme
Parabolic sylinder functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact