Nanoscale zero-valent iron particles (nZVI) have been studied in recent years as a promising technology for the remediation of contaminated aquifers. Specific positive features of nZVI are the high reactivity towards a broad range of contaminants and the possibility of injecting in aqueous slurries for a targeted remediation of contaminated areas. However, crucial points to be addressed are stability against aggregation, mobility in subsurface environments, and longevity. In this work a review is presented on the current knowledge on the properties, reactivity and mobility in porous media of nZVI and their application to groundwater remediation. A specific focus is devoted to the methodologies to the colloidal stability of the nZVI slurries and to the available numerical tools for the simulation of laboratory and field scale mobility of the particles when injected in porous media. © 2013 Elsevier Ltd. All rights reserved.

Nanoscale zerovalent iron particles for groundwater remediation: A review

Cruz Viggi Carolina;
2014

Abstract

Nanoscale zero-valent iron particles (nZVI) have been studied in recent years as a promising technology for the remediation of contaminated aquifers. Specific positive features of nZVI are the high reactivity towards a broad range of contaminants and the possibility of injecting in aqueous slurries for a targeted remediation of contaminated areas. However, crucial points to be addressed are stability against aggregation, mobility in subsurface environments, and longevity. In this work a review is presented on the current knowledge on the properties, reactivity and mobility in porous media of nZVI and their application to groundwater remediation. A specific focus is devoted to the methodologies to the colloidal stability of the nZVI slurries and to the available numerical tools for the simulation of laboratory and field scale mobility of the particles when injected in porous media. © 2013 Elsevier Ltd. All rights reserved.
2014
Istituto di Ricerca Sulle Acque - IRSA
Colloidal stability
Field injection
Nanoscale zerovalent iron
nZVI characterization
nZVI reactivity
Transport modelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 434
  • ???jsp.display-item.citation.isi??? ND
social impact