Abstract. The main aim of this research was to verify whether mineral nitrogen (N) continuously released by organic fertilisers during the field bean growth cycle may be sufficiently high to enhance plant growth and seed yield but sufficiently low that it does not negatively affect nodulation and symbiotic N2 fixation. Plants were grown without N fertilisation, and with mineral and organic N (biosolids) fertilisation. All plant parts were collected and dry matter, N content, %Ndfa, and N2 fixed were measured at 8th node, flowering, and maturity stages. Nodule specific activity, N derived from soil, and N remobilisation were estimated. The nitrate concentration of soil was also determined. Biosolids reduced nodule growth, nodule fixation activity, and N2 fixation during the vegetative but not the reproductive phase. During seed filling, nodule fixation activity increased and N2 fixation was roughly twice that of the Control plants. Biosolids increased seed yield by removing the imbalance between N demand and N supply for pod growth. This may be related to an increase in nodulespecific activity due to the reduction in mineral N in the soil.

Biosolids differently affect seed yield, nodule growth, nodule-specific activity, and symbiotic nitrogen fixation of field bean

A Scartazza;
2017

Abstract

Abstract. The main aim of this research was to verify whether mineral nitrogen (N) continuously released by organic fertilisers during the field bean growth cycle may be sufficiently high to enhance plant growth and seed yield but sufficiently low that it does not negatively affect nodulation and symbiotic N2 fixation. Plants were grown without N fertilisation, and with mineral and organic N (biosolids) fertilisation. All plant parts were collected and dry matter, N content, %Ndfa, and N2 fixed were measured at 8th node, flowering, and maturity stages. Nodule specific activity, N derived from soil, and N remobilisation were estimated. The nitrate concentration of soil was also determined. Biosolids reduced nodule growth, nodule fixation activity, and N2 fixation during the vegetative but not the reproductive phase. During seed filling, nodule fixation activity increased and N2 fixation was roughly twice that of the Control plants. Biosolids increased seed yield by removing the imbalance between N demand and N supply for pod growth. This may be related to an increase in nodulespecific activity due to the reduction in mineral N in the soil.
2017
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
nitrogen isotope composition
nitrogen remobilisation
%Ndfa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact