The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time-dependent density functional theory level. Special attention has been paid to solvent effects, included by a mixed discrete/continuum model, and to determining how our results depend on the adopted DFT functional (CAM-B3LYP and B3LYP). Whereas including solvent effects does not dramatically impact the MCD and OPA spectra, though improving the agreement with the experimental spectra, the performances of CAM-B3LYP and B3LYP are remarkably different. CAM-B3LYP captures well the effect of thionation on the uracil excited states and provides spectra in good agreement with the experiments, whereas B3LYP shows some deficiency in describing 2-TU and 2,4-DTU spectra, despite being more accurate than CAM-B3LYP for 4-TU

Optical absorption and magnetic circular dichroism spectra of thiouracils: A quantum mechanical study in solution

Santoro F;Improta R
2017

Abstract

The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time-dependent density functional theory level. Special attention has been paid to solvent effects, included by a mixed discrete/continuum model, and to determining how our results depend on the adopted DFT functional (CAM-B3LYP and B3LYP). Whereas including solvent effects does not dramatically impact the MCD and OPA spectra, though improving the agreement with the experimental spectra, the performances of CAM-B3LYP and B3LYP are remarkably different. CAM-B3LYP captures well the effect of thionation on the uracil excited states and provides spectra in good agreement with the experiments, whereas B3LYP shows some deficiency in describing 2-TU and 2,4-DTU spectra, despite being more accurate than CAM-B3LYP for 4-TU
2017
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Thiouracils
Magnetic circular dichroism
DFT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/339913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 7
social impact