The retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e. back diffusion) is responsible for the long-term release of contaminants during remediation operation. In this paper, we perform pore-scale calculations for the transport of contaminant through heterogeneous porous media composed of low and high mobility regions with two objectives: (i) study the effect of permeability contrast and solute transport conditions on the exchange of solutes between mobile and immobile regions and (ii) estimate the mass of contaminants sequestered in low mobility regions based on concentration breakthrough curves.
Pore-scale simulations of concentration tails in heterogeneous porous media
Di Palma Paolo Roberto;Guyennon Nicolas;
2017
Abstract
The retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e. back diffusion) is responsible for the long-term release of contaminants during remediation operation. In this paper, we perform pore-scale calculations for the transport of contaminant through heterogeneous porous media composed of low and high mobility regions with two objectives: (i) study the effect of permeability contrast and solute transport conditions on the exchange of solutes between mobile and immobile regions and (ii) estimate the mass of contaminants sequestered in low mobility regions based on concentration breakthrough curves.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


