The computation of nodes centrality is of great importance for the analysis of graphs. The current flow betweenness is an interesting centrality index that is computed by considering how the information travels along all the possible paths of a graph. The current flow betweenness exploits basic results from electrical circuits, i.e. Kirchhoff's laws, to evaluate the centrality of vertices. The computation of the current flow betweenness may exceed the computational capability of a single machine for very large graphs composed by millions of nodes. In this paper we propose a solution that estimates the current flow betweenness in a distributed setting, by defining a vertex-centric, gossip-based algorithm. Each node, relying on its local information, in a self-adaptive way generates new flows to improve the betweenness of all the nodes of the graph. Our experimental evaluation shows that our proposal achieves high correlation with the exact current flow betweenness, and provides a good centrality measure for large graphs.

Distributed current flow betweenness centrality

Carlini E.;Dazzi P.
2015

Abstract

The computation of nodes centrality is of great importance for the analysis of graphs. The current flow betweenness is an interesting centrality index that is computed by considering how the information travels along all the possible paths of a graph. The current flow betweenness exploits basic results from electrical circuits, i.e. Kirchhoff's laws, to evaluate the centrality of vertices. The computation of the current flow betweenness may exceed the computational capability of a single machine for very large graphs composed by millions of nodes. In this paper we propose a solution that estimates the current flow betweenness in a distributed setting, by defining a vertex-centric, gossip-based algorithm. Each node, relying on its local information, in a self-adaptive way generates new flows to improve the betweenness of all the nodes of the graph. Our experimental evaluation shows that our proposal achieves high correlation with the exact current flow betweenness, and provides a good centrality measure for large graphs.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Graph Processing
Distributed Algorithms
File in questo prodotto:
File Dimensione Formato  
prod_344345-doc_107857.pdf

accesso aperto

Descrizione: Distributed Current Flow Betweenness Centrality
Tipologia: Versione Editoriale (PDF)
Dimensione 501.46 kB
Formato Adobe PDF
501.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/340364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact