In this paper, the asymptotic bit operation cost of a family of quadrature formulas, especially suitable for evaluation of improper integrals, is studied. More precisely, we consider the family of quadrature formulas obtained by applying k times the variable transformation x = sinh(y) and then the trapezoidal rule to the transformed integral. We prove that, if the integrand function is analytic in the interior part of the integration interval and approaches zero at a rate which is at least the reciprocal of a polynomial, then the computational bit cost is bounded above by a polynomial function of the number of exact digits in the result. Moreover, disregarding logarithmic terms, the double exponential transformation (k = 2) leads to the optimal cost among the methods of this family.

Asymptotic bit cost of quadrature formulas obtained by variable transformation

Favati P
1997

Abstract

In this paper, the asymptotic bit operation cost of a family of quadrature formulas, especially suitable for evaluation of improper integrals, is studied. More precisely, we consider the family of quadrature formulas obtained by applying k times the variable transformation x = sinh(y) and then the trapezoidal rule to the transformed integral. We prove that, if the integrand function is analytic in the interior part of the integration interval and approaches zero at a rate which is at least the reciprocal of a polynomial, then the computational bit cost is bounded above by a polynomial function of the number of exact digits in the result. Moreover, disregarding logarithmic terms, the double exponential transformation (k = 2) leads to the optimal cost among the methods of this family.
1997
improper integral
double exponential method
trapezoidal rule
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/340367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact