Changes of the characteristics of intrinsic tryptophan fluorescence of the wild type of D-galactose/D-glucose-binding protein from Escherichia coli (GGBPwt) induced by D-glucose binding were examined by the intrinsic UV-fluorescence of proteins, circular dyhroism in the near-UV region, and acrylamide-induced fluorescence quenching. The analysis of the different characteristics of GGBPwt and its mutant form GGBP-W183A together with the analysis of the microenvironment of tryptophan residues of GGBPwt revealed that Trp 183, which is directly involved in sugar binding, has the least influence on the provoked by D-glucose blue shift and increase in the intensity of protein intrinsic fluorescence in comparison with other tryptophan
Tryptophan residue of the D-galactose/D-glucose-binding protein from E. coli localized in its active center does not contribute to the change in intrinsic fluorescence upon glucose binding
Staiano M;D'Auria S;
2015
Abstract
Changes of the characteristics of intrinsic tryptophan fluorescence of the wild type of D-galactose/D-glucose-binding protein from Escherichia coli (GGBPwt) induced by D-glucose binding were examined by the intrinsic UV-fluorescence of proteins, circular dyhroism in the near-UV region, and acrylamide-induced fluorescence quenching. The analysis of the different characteristics of GGBPwt and its mutant form GGBP-W183A together with the analysis of the microenvironment of tryptophan residues of GGBPwt revealed that Trp 183, which is directly involved in sugar binding, has the least influence on the provoked by D-glucose blue shift and increase in the intensity of protein intrinsic fluorescence in comparison with other tryptophanI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.