The synthesis of organic-inorganic hybrid compounds based on phenylphosphonate and their use as precursors to form LiMnxFe(1-x)PO4 composites containing carbonaceous substances with sub-micrometric morphology are presented. The experimental procedure includes the preliminary synthesis of Fe2+ and/or Mn2+ phenylphosphonates with the general formula Fe(1-x)Mnx[(C6H5PO3)(H2O)] (with 0 < x < 1), which are then mixed at different molar ratios with lithium carbonate. In this way the carbon, obtained from in situ partial oxidation of the precursor organic part, coats the LiMnxFe(1-x)PO4 particles. After a structural and morphological characterization, the electrochemical behavior of lithium iron manganese phosphates has been compared to the one of pristine LiFePO4 and LiMnPO4, in order to evaluate the doping influence on the material.

Synthesis, Characterization, and Electrochemical Behavior of LiMnxFe(1x)PO4 Composites Obtained from Phenylphosphonate-Based Organic-Inorganic Hybrids

Bauer EM;
2017

Abstract

The synthesis of organic-inorganic hybrid compounds based on phenylphosphonate and their use as precursors to form LiMnxFe(1-x)PO4 composites containing carbonaceous substances with sub-micrometric morphology are presented. The experimental procedure includes the preliminary synthesis of Fe2+ and/or Mn2+ phenylphosphonates with the general formula Fe(1-x)Mnx[(C6H5PO3)(H2O)] (with 0 < x < 1), which are then mixed at different molar ratios with lithium carbonate. In this way the carbon, obtained from in situ partial oxidation of the precursor organic part, coats the LiMnxFe(1-x)PO4 particles. After a structural and morphological characterization, the electrochemical behavior of lithium iron manganese phosphates has been compared to the one of pristine LiFePO4 and LiMnPO4, in order to evaluate the doping influence on the material.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
lithium-ion battery; LiMnxFe(1-x)PO4; carbon coating; pseudo-diffusion coefficient; potential step voltammetry; electrochemical impedance spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/340925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact