Plastic debris accumulates in the marine environment, fragmenting into microplastics (MP), causing concern about their potential toxic effects when ingested by marine organisms. The aim of this study was to verify whether 0.1 ?m polystyrene beads are likely to trigger lethal and sub-lethal responses in marine planktonic crustaceans. MP build-up, mortality, swimming speed alteration and enzyme activity (cholinesterases, catalase) were investigated in the larval stages of Amphibalanus amphitrite barnacle and of Artemia franciscana brine shrimp exposed to a wide range of MP concentrations (from 0.001 to 10 mg L-1) for 24 and 48 h. The results show that MP were accumulated in crustaceans, without affecting mortality. Swimming activity was significantly altered in crustaceans exposed to high MP concentrations (> 1 mg L-1) after 48 h. Enzyme activities were significantly affected in all organisms exposed to all the above MP concentrations, indicating that neurotoxic effects and oxidative stress were induced after MP treatment. These findings provide new insight into sub-lethal MP effects on marine crustaceans.

Plastic debris accumulates in the marine environment, fragmenting into microplastics (MP), causing concern. about their potential toxic effects when ingested by marine organisms. The aim of this study was to verify whether 0.1 mu m polystyrene beads are likely to trigger lethal and sub-lethal responses in marine planktonic crustaceans. MP build-up, mortality, swimming speed alteration and enzyme activity (cholinesterases, catalase) were investigated in the larval stages of Amphibalanus amphitrite barnacle and of Artemia franciscana brine shrimp exposed to a wide range of MP concentrations (from 0.001 to 10 mg L-1) for 24 and 48 h. The results show that MP were accumulated in crustaceans, without affecting mortality. Swimming activity was significantly altered in crustaceans exposed to high MP concentrations (> 1 mg L-1) after 48 h. Enzyme activities were significantly affected in all organisms exposed to all the above MP concentrations, indicating that neurotoxic effects and oxidative stress were induced after MP treatment. These findings provide new insight into sub-lethal MP effects on marine crustaceans.

Effects of polystyrene microbeads in marine planktonic crustaceans

Gambardella Chiara;Morgana Silvia;Piazza Veronica;Costa Elisa;Garaventa Francesca;Faimali Marco
2017

Abstract

Plastic debris accumulates in the marine environment, fragmenting into microplastics (MP), causing concern. about their potential toxic effects when ingested by marine organisms. The aim of this study was to verify whether 0.1 mu m polystyrene beads are likely to trigger lethal and sub-lethal responses in marine planktonic crustaceans. MP build-up, mortality, swimming speed alteration and enzyme activity (cholinesterases, catalase) were investigated in the larval stages of Amphibalanus amphitrite barnacle and of Artemia franciscana brine shrimp exposed to a wide range of MP concentrations (from 0.001 to 10 mg L-1) for 24 and 48 h. The results show that MP were accumulated in crustaceans, without affecting mortality. Swimming activity was significantly altered in crustaceans exposed to high MP concentrations (> 1 mg L-1) after 48 h. Enzyme activities were significantly affected in all organisms exposed to all the above MP concentrations, indicating that neurotoxic effects and oxidative stress were induced after MP treatment. These findings provide new insight into sub-lethal MP effects on marine crustaceans.
2017
Istituto di Scienze Marine - ISMAR
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino - IAS
Plastic debris accumulates in the marine environment, fragmenting into microplastics (MP), causing concern about their potential toxic effects when ingested by marine organisms. The aim of this study was to verify whether 0.1 ?m polystyrene beads are likely to trigger lethal and sub-lethal responses in marine planktonic crustaceans. MP build-up, mortality, swimming speed alteration and enzyme activity (cholinesterases, catalase) were investigated in the larval stages of Amphibalanus amphitrite barnacle and of Artemia franciscana brine shrimp exposed to a wide range of MP concentrations (from 0.001 to 10 mg L-1) for 24 and 48 h. The results show that MP were accumulated in crustaceans, without affecting mortality. Swimming activity was significantly altered in crustaceans exposed to high MP concentrations (> 1 mg L-1) after 48 h. Enzyme activities were significantly affected in all organisms exposed to all the above MP concentrations, indicating that neurotoxic effects and oxidative stress were induced after MP treatment. These findings provide new insight into sub-lethal MP effects on marine crustaceans.
Crustaceans
Enzyme activity
Microplastics
Mortality
Swimming
Toxicity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 212
  • ???jsp.display-item.citation.isi??? ND
social impact