In this study, we report a direct writing method for the fabrication of microfluidic footpaths by pyro-electrohydrodynamic (EHD) jet printing. Here, we propose the use of a nozzle-free three-dimensional printing technique for the fabrication of printed structures that can be embedded in a variety of soft, transparent, flexible, and biocompatible polymers and thus easily integrated into lab-on-chip devices. We prove the advantage of the high resolution and flexibility of pyro-EHD printing for the realization of microfluidic channels well below the standard limit in dimension of conventional ink-jet printing technique and simply adaptable to the end-user desires in terms of geometry and materials. Starting from the description of the innovative approach proposed for the channel fabrication, we demonstrate the design, fabrication, and proof of a microfluidic matrix of interconnected channels. The method described here could be a breakthrough technology for the fabrication of in situ implantable, stretchable, and biocompatible devices, opening new routes in the field of biomedical engineering and wearable electronics.

Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing

Coppola S;Nasti G;Olivieri F;Vespini V;Ferraro P
2017

Abstract

In this study, we report a direct writing method for the fabrication of microfluidic footpaths by pyro-electrohydrodynamic (EHD) jet printing. Here, we propose the use of a nozzle-free three-dimensional printing technique for the fabrication of printed structures that can be embedded in a variety of soft, transparent, flexible, and biocompatible polymers and thus easily integrated into lab-on-chip devices. We prove the advantage of the high resolution and flexibility of pyro-EHD printing for the realization of microfluidic channels well below the standard limit in dimension of conventional ink-jet printing technique and simply adaptable to the end-user desires in terms of geometry and materials. Starting from the description of the innovative approach proposed for the channel fabrication, we demonstrate the design, fabrication, and proof of a microfluidic matrix of interconnected channels. The method described here could be a breakthrough technology for the fabrication of in situ implantable, stretchable, and biocompatible devices, opening new routes in the field of biomedical engineering and wearable electronics.
2017
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
3d printing
microchannel
direct writing
polymer
microfluidic
ferroelectric crystal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
social impact