One of the main goals of the Mercury Orbiter Radio science Experiment (MORE), onboard the ESA-JAXA BepiColombo mission to Mercury, is to perform a test of gravitational theories by means of high precision radio-observables, constraining sev- eral Post-Newtonian (PN) parameters. This will be performed in two steps: (i) with a superior solar conjunction experiment during the cruise phase of the mission; (ii) by reconstructing the orbit of Mercury around the Sun once the spacecraft will be arrived at Mercury. In this work we present the results of numerical simulations of the MORE relativity experiment, carried out in a realistic scenario, showing how the experiment can improve over current estimates.
On the determination of post-Newtonian parameters with BepiColombo radio science experiment
Giulia Schettino;
2017
Abstract
One of the main goals of the Mercury Orbiter Radio science Experiment (MORE), onboard the ESA-JAXA BepiColombo mission to Mercury, is to perform a test of gravitational theories by means of high precision radio-observables, constraining sev- eral Post-Newtonian (PN) parameters. This will be performed in two steps: (i) with a superior solar conjunction experiment during the cruise phase of the mission; (ii) by reconstructing the orbit of Mercury around the Sun once the spacecraft will be arrived at Mercury. In this work we present the results of numerical simulations of the MORE relativity experiment, carried out in a realistic scenario, showing how the experiment can improve over current estimates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.