Head and neck squamous cell carcinomas (HNSCC) are a diverse group of tumors with high morbidity and mortality that have remained mostly unchanged over the past decades. The epidermal growth factor receptor (EGFR) is often overexpressed and activated in these tumors and strongly contributes to their pathogenesis. Still, EGFR-targeted therapies such as monoclonal antibodies and kinase inhibitors have demonstrated only limited improvements in the clinical outcome of this disease. Here, we take advantage of the extraordinary affinity of EGF for its cognate receptor to specifically target magnetite-containing nanoparticles to HNSCC cells and mediate, in vitro, their cellular upload. On the basis of this, we show efficient accumulation, in vivo, of such nanoparticles in subcutaneous xenograft tumor tissues in sufficient amounts to be able to mediate visualization by magnetic resonance imaging. Overall, our EGF-coated nanosystem may warrant, in the near future, novel and very efficient theranostic approaches to HNSCC.

EGFR-targeted magnetic nanovectors recognize, in vivo, head and neck squamous cells carcinoma-derived tumors

Colecchia D;Mosconi E;Chiariello M
2017

Abstract

Head and neck squamous cell carcinomas (HNSCC) are a diverse group of tumors with high morbidity and mortality that have remained mostly unchanged over the past decades. The epidermal growth factor receptor (EGFR) is often overexpressed and activated in these tumors and strongly contributes to their pathogenesis. Still, EGFR-targeted therapies such as monoclonal antibodies and kinase inhibitors have demonstrated only limited improvements in the clinical outcome of this disease. Here, we take advantage of the extraordinary affinity of EGF for its cognate receptor to specifically target magnetite-containing nanoparticles to HNSCC cells and mediate, in vitro, their cellular upload. On the basis of this, we show efficient accumulation, in vivo, of such nanoparticles in subcutaneous xenograft tumor tissues in sufficient amounts to be able to mediate visualization by magnetic resonance imaging. Overall, our EGF-coated nanosystem may warrant, in the near future, novel and very efficient theranostic approaches to HNSCC.
2017
Istituto di Fisiologia Clinica - IFC
HNSCC
EGFR
nanoparticles
magnetite
targeting delivery systems
File in questo prodotto:
File Dimensione Formato  
prod_379886-doc_128728.pdf

solo utenti autorizzati

Descrizione: 2017 Colecchia (ACS Med Chem Lett)
Tipologia: Documento in Post-print
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact