Colli Albani (Italy) is an alkali-potassic volcanic district located about 20 km SE of Rome (3 M inhabitants) and lastly erupted 36 ka ago. Since the modern volcanic activity at Colli Albani seems not particularly intense, scientists have interpreted this volcano to be quiescent. Therefore, unlike other Italian volcanoes, the area has not undergone extensive monitoring. However, a seismic swarm during 1989-1990 has been related to a local uplift of ca. 30 cm since the 1950's along a line crossing the western side of the volcano, giving rise to a debate about its possible interpretation in terms of unrest. Furthermore, recent geological investigations indicate a coupling of eruption history, uplift history, and changes in the regional stress field, pointing to the conclusion that Colli Albani is in unrest. Here, we investigate the deformation processes and the gas geochemistry (He, CO2 and their isotopic ratios). From the analysis of about 20 years of InSAR data (1992-2010), we retrieve a puzzling deformation field at Colli Albani, consisting of long-term, constant rate, uplift of its western and southern flanks, and by coeval intra-caldera subsidence. This deformation setting cannot be related to a single cause, but reflects the interaction between different and spatially independent dynamic processes. Furthermore, we obtain information on the nature of the sources from the isotopic composition of the discharging CO2 and helium, showing that the Colli Albani dynamics are the result of decoupling between magma intrusion along pre-existing tectonic faults and caldera subsidence. In order to design a comprehensive geophysical model inclusive of all the above reported peculiarities, we consider potential sources related to magma/fluid migration or accumulation processes at depth through the main tectonic structures active at CA, by means of a numerical model. In summary, we demonstrate that despite the present-day phase of caldera deflation, the magmatic system at Colli Albani is in a rejuvenation stage and new, articulated dike-like magma storage zones are slowly forming below the western and southern flanks, with direct consequences for the volcanic hazard assessment at Rome.

Evidence of magma recharge taking place at Colli Albani, the volcanic district at the gates of Rome, from geodesy and gas geochemistry

G Ciotoli;
2016

Abstract

Colli Albani (Italy) is an alkali-potassic volcanic district located about 20 km SE of Rome (3 M inhabitants) and lastly erupted 36 ka ago. Since the modern volcanic activity at Colli Albani seems not particularly intense, scientists have interpreted this volcano to be quiescent. Therefore, unlike other Italian volcanoes, the area has not undergone extensive monitoring. However, a seismic swarm during 1989-1990 has been related to a local uplift of ca. 30 cm since the 1950's along a line crossing the western side of the volcano, giving rise to a debate about its possible interpretation in terms of unrest. Furthermore, recent geological investigations indicate a coupling of eruption history, uplift history, and changes in the regional stress field, pointing to the conclusion that Colli Albani is in unrest. Here, we investigate the deformation processes and the gas geochemistry (He, CO2 and their isotopic ratios). From the analysis of about 20 years of InSAR data (1992-2010), we retrieve a puzzling deformation field at Colli Albani, consisting of long-term, constant rate, uplift of its western and southern flanks, and by coeval intra-caldera subsidence. This deformation setting cannot be related to a single cause, but reflects the interaction between different and spatially independent dynamic processes. Furthermore, we obtain information on the nature of the sources from the isotopic composition of the discharging CO2 and helium, showing that the Colli Albani dynamics are the result of decoupling between magma intrusion along pre-existing tectonic faults and caldera subsidence. In order to design a comprehensive geophysical model inclusive of all the above reported peculiarities, we consider potential sources related to magma/fluid migration or accumulation processes at depth through the main tectonic structures active at CA, by means of a numerical model. In summary, we demonstrate that despite the present-day phase of caldera deflation, the magmatic system at Colli Albani is in a rejuvenation stage and new, articulated dike-like magma storage zones are slowly forming below the western and southern flanks, with direct consequences for the volcanic hazard assessment at Rome.
2016
Istituto di Geologia Ambientale e Geoingegneria - IGAG
Colli albani volcano
Magmatic helium and carbon dioxide
Deformation modelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact