We investigate different mean-field-like approximations for stochastic dynamics on graphs, within the framework of a cluster-variational approach. In analogy with its equilibrium counterpart, this approach allows one to give a unified view of various (previously known) approximation schemes, and suggests quite a systematic way to improve the level of accuracy. We compare the different approximations with Monte Carlo simulations on a reversible (susceptible-infected-susceptible) discrete-time epidemic-spreading model on random graphs.
Variational approximations for stochastic dynamics on graphs
Pretti M.
2017
Abstract
We investigate different mean-field-like approximations for stochastic dynamics on graphs, within the framework of a cluster-variational approach. In analogy with its equilibrium counterpart, this approach allows one to give a unified view of various (previously known) approximation schemes, and suggests quite a systematic way to improve the level of accuracy. We compare the different approximations with Monte Carlo simulations on a reversible (susceptible-infected-susceptible) discrete-time epidemic-spreading model on random graphs.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_379936-doc_128754.pdf
solo utenti autorizzati
Descrizione: Variational approximations for stochastic dynamics on graphs
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.