The chemical reactivity of single layers of supported graphene (G) is affected by the nature of the underlying substrate: in particular CO chemisorption occurs on G/Ni(111), while graphene on Cu is inert. Here, we demonstrate experimentally that doping of the G layer with nitrogen atoms further increases the reactivity of the G/Ni(111) system towards CO. The doped layer is obtained by sputtering pristine G/Ni(111) with N2 + ions. For an ~11% dopant concentration, an additional electron energy loss at 238 meV appears in the HREEL spectra besides the loss around 256 meV present also on pristine G/Ni(111). The new feature corresponds to a CO species with a higher desorption temperature and, consequently, a higher adsorption energy than the one forming on pristine G/Ni(111). At low coverage, the adsorption energy is estimated to be ~0.85 eV/molecule.

Chemisorption of CO on N-doped graphene on Ni(111)

Carraro G;Smerieri M;Savio L;Bracco G;Vattuone L
2018

Abstract

The chemical reactivity of single layers of supported graphene (G) is affected by the nature of the underlying substrate: in particular CO chemisorption occurs on G/Ni(111), while graphene on Cu is inert. Here, we demonstrate experimentally that doping of the G layer with nitrogen atoms further increases the reactivity of the G/Ni(111) system towards CO. The doped layer is obtained by sputtering pristine G/Ni(111) with N2 + ions. For an ~11% dopant concentration, an additional electron energy loss at 238 meV appears in the HREEL spectra besides the loss around 256 meV present also on pristine G/Ni(111). The new feature corresponds to a CO species with a higher desorption temperature and, consequently, a higher adsorption energy than the one forming on pristine G/Ni(111). At low coverage, the adsorption energy is estimated to be ~0.85 eV/molecule.
2018
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Graphene
Adsorption
Carbon monoxide
Vibrational spectroscopy
XPS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact