We present a first-principles investigation of the excited-state properties of electron acceptors in organic photovoltaics including C-60, C-70, [6,6]-phenyl-C-61-butyric-acid-methyl-ester ([C-60] PCBM), and bis-[C-60] PCBM usingmany-body perturbation theory within the Hedin's G(0)W(0) approximation and an efficient Lanczos approach. Calculated vertical ionization potentials (VIP) and vertical electron affinities (VEA) of C-60 and C-70 agree very well with experimental values measured in the gas phase. The density of states of all three molecules is also compared to photoemission and inverse photoemission spectra measured on thin films, and they exhibit a close agreement-a rigid energy-gap renormalization owing to intermolecular interactions in the thin films. In addition, it is shown that the low-lying unoccupied states of [C-60] PCBM are all derived from the highest-occupied molecular orbitals and the lowest-unoccupied molecular orbitals of fullerene C-60. The functional side group in [C-60] PCBM introduces a slight electron transfer to the fullerene cage, resulting in small decreases of both VIP and VEA. This small change of VEA provides a solid justification for the increase of open-circuit voltage when replacing fullerene C-60 with [C-60] PCBM as the electron acceptor in bulk heterojunction polymer solar cells.

First-principles investigation of organic photovoltaic materials C-60, C-70, [C-60]PCBM, and bis-[C-60]PCBM using a many-body G(0)W(0)-Lanczos approach

Paolo Umari;
2015

Abstract

We present a first-principles investigation of the excited-state properties of electron acceptors in organic photovoltaics including C-60, C-70, [6,6]-phenyl-C-61-butyric-acid-methyl-ester ([C-60] PCBM), and bis-[C-60] PCBM usingmany-body perturbation theory within the Hedin's G(0)W(0) approximation and an efficient Lanczos approach. Calculated vertical ionization potentials (VIP) and vertical electron affinities (VEA) of C-60 and C-70 agree very well with experimental values measured in the gas phase. The density of states of all three molecules is also compared to photoemission and inverse photoemission spectra measured on thin films, and they exhibit a close agreement-a rigid energy-gap renormalization owing to intermolecular interactions in the thin films. In addition, it is shown that the low-lying unoccupied states of [C-60] PCBM are all derived from the highest-occupied molecular orbitals and the lowest-unoccupied molecular orbitals of fullerene C-60. The functional side group in [C-60] PCBM introduces a slight electron transfer to the fullerene cage, resulting in small decreases of both VIP and VEA. This small change of VEA provides a solid justification for the increase of open-circuit voltage when replacing fullerene C-60 with [C-60] PCBM as the electron acceptor in bulk heterojunction polymer solar cells.
2015
Istituto Officina dei Materiali - IOM -
1Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge
Massachusetts 02139
USA 2Department of Materials Science and Engineering
Texas A&M University
College Station
Texas 77843
USA 3Dipartimento di Fisica e Astronomia
Universit di Padova
via Marzolo 8
I-35131 Padova
Italy 4CNR-IOM DEMOCRITOS
Theory@Elettra Group
c/o Sincrotrone Trieste
Area Science Park
Basovizza
I-34012 Trieste
Italy 5Theory and Simulations of Materials (THEOS)
and National Center for Computational Design and Discovery of Novel Materials (MARVEL)
?Ecole Polytechnique F ?ed ?erale de Lausanne
1015 Lausanne
Switzerland
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/341872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact