This study addresses whether cave dwelling annelids exhibited similar reductive and constructive traits equally as strong as those of arthropods and vertebrates inhabiting caves. Known as troglomorphism, these adaptations bring about striking morphologies across invertebrates and vertebrates from both aquatic and terrestrial cave habitats, and include varying degrees of eye and pigmentation loss, as well as hypertrophy of body appendages and sensorial structures. Employing phylogenetic comparative methods and ancestral character reconstructions on a worldwide data set of a group of annelids, the scale worms (Aphroditiformia), we investigate the behavioural and morphological traits of species living in marine caves in comparison with those species living outside caves. Our work demonstrated that cave scale worms respond similar to arthropods in cave environments, showing a significant elongation of sensory parapodial cirri, while lacking eyes and pigmentation. However, whereas elongation of sensory appendages likely occurred in correlation to cave colonization, eyes were plausibly lost in correlation with specialization and colonization of deep-sea habitats.
Anophthalmia and elongation of body appendages in cave scale worms (Annelida: Aphroditiformia)
Diego Fontaneto;Alejandro Martinez
2018
Abstract
This study addresses whether cave dwelling annelids exhibited similar reductive and constructive traits equally as strong as those of arthropods and vertebrates inhabiting caves. Known as troglomorphism, these adaptations bring about striking morphologies across invertebrates and vertebrates from both aquatic and terrestrial cave habitats, and include varying degrees of eye and pigmentation loss, as well as hypertrophy of body appendages and sensorial structures. Employing phylogenetic comparative methods and ancestral character reconstructions on a worldwide data set of a group of annelids, the scale worms (Aphroditiformia), we investigate the behavioural and morphological traits of species living in marine caves in comparison with those species living outside caves. Our work demonstrated that cave scale worms respond similar to arthropods in cave environments, showing a significant elongation of sensory parapodial cirri, while lacking eyes and pigmentation. However, whereas elongation of sensory appendages likely occurred in correlation to cave colonization, eyes were plausibly lost in correlation with specialization and colonization of deep-sea habitats.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.