The synthesis of iron oxide nanoparticles (FexOy NPs) is an important area of research because of the growing scientific and technological interest for their potential applications. Between iron oxide nanomaterials, magnetite (Fe3O4) and maghemite (?-Fe2O3) are especially promising for applications in nanomedicine and tissue engineering due to their biocompatibility and low toxicity when in contact with the human tissues. Laser Ablation in Liquid (LAL) is one of the simplest, cheapest and cleanest method for the synthesis of FexOy NPs, since it does not require chemical precursors and nanoparticles are directly obtained in water as a stable colloidal solutions. We have produced FexOy NPs by LAL technique in water, using a Ti:sapphire laser source (? = 800 nm, ? = 100 fs, repetition rate = 1 kHz). The obtained FexOy NPs have been mixed with hydroxyapatite (HA) powder and then the pressed powder has been used for the deposition of composite HA& FexOy thin films by Pulsed Laser Deposition (laser source: Nd:YAG, ? = 532 nm, ? = 10 ns, repetition rate = 10 Hz). During the nanosecond ablation process complete oxidation of the iron nanoparticles has been observed. The characteristics of the produced nanoparticles and films deposited at different substrate temperature have been investigated by microscopic (TEM and SEM) and spectroscopic (FT-IR and ?-Raman) techniques. Magnetic behavior of iron FexOy NPs and deposited films has been studied. Considering that nanostructured film coating can improve the bioactivity of the implant and that the presence of FexOy NP benefits cells growth, we can expect that successful implant could be obtained.

Laser synthesis in liquid of iron oxide nanoparticles and their potential application in composite film coatings for bone-related implants.

M Fosca;A Santagata;
2017

Abstract

The synthesis of iron oxide nanoparticles (FexOy NPs) is an important area of research because of the growing scientific and technological interest for their potential applications. Between iron oxide nanomaterials, magnetite (Fe3O4) and maghemite (?-Fe2O3) are especially promising for applications in nanomedicine and tissue engineering due to their biocompatibility and low toxicity when in contact with the human tissues. Laser Ablation in Liquid (LAL) is one of the simplest, cheapest and cleanest method for the synthesis of FexOy NPs, since it does not require chemical precursors and nanoparticles are directly obtained in water as a stable colloidal solutions. We have produced FexOy NPs by LAL technique in water, using a Ti:sapphire laser source (? = 800 nm, ? = 100 fs, repetition rate = 1 kHz). The obtained FexOy NPs have been mixed with hydroxyapatite (HA) powder and then the pressed powder has been used for the deposition of composite HA& FexOy thin films by Pulsed Laser Deposition (laser source: Nd:YAG, ? = 532 nm, ? = 10 ns, repetition rate = 10 Hz). During the nanosecond ablation process complete oxidation of the iron nanoparticles has been observed. The characteristics of the produced nanoparticles and films deposited at different substrate temperature have been investigated by microscopic (TEM and SEM) and spectroscopic (FT-IR and ?-Raman) techniques. Magnetic behavior of iron FexOy NPs and deposited films has been studied. Considering that nanostructured film coating can improve the bioactivity of the implant and that the presence of FexOy NP benefits cells growth, we can expect that successful implant could be obtained.
2017
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
composite coatings for bone-related implants; nanoparticles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/342326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact