Sea surface temperature (SST) and turbidity (T) derived from Landsat 8 (L8) imagery were used to characterize river plumes in the northern Adriatic Sea (NAS) during a significant flood event in November 2014. Circulation patterns and sea surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes' interaction with the receiving waters and among them. There was a good agreement of the SSS, T, and SST fields at the sub-mesoscale and mesoscale delineation of the major river plumes. L8 30 m resolution also enabled the description of smaller plume structures. The different plumes' reflectance spectra were related to the lithological fingerprint of the sediments in the river catchments. Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines' coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters. The surface expressions of all the river plumes occurring in NAS were classified based on the occurrence of the plume dynamical regions in the L8 30 m resolution imagery.

High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event

Brando VE;Braga F;Zaggia L;Giardino C;Bresciani M;Matta E;Bellafiore D;Ferrarin C;Maicu F;Benetazzo A;Bonaldo D;Carniel S
2015

Abstract

Sea surface temperature (SST) and turbidity (T) derived from Landsat 8 (L8) imagery were used to characterize river plumes in the northern Adriatic Sea (NAS) during a significant flood event in November 2014. Circulation patterns and sea surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes' interaction with the receiving waters and among them. There was a good agreement of the SSS, T, and SST fields at the sub-mesoscale and mesoscale delineation of the major river plumes. L8 30 m resolution also enabled the description of smaller plume structures. The different plumes' reflectance spectra were related to the lithological fingerprint of the sediments in the river catchments. Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines' coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters. The surface expressions of all the river plumes occurring in NAS were classified based on the occurrence of the plume dynamical regions in the L8 30 m resolution imagery.
2015
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Istituto di Scienze Marine - ISMAR
satellite; turbidity; river plume
File in questo prodotto:
File Dimensione Formato  
prod_346419-doc_172711.pdf

accesso aperto

Descrizione: High-resolution satellite turbidity and sea surface temperature observations of river plume interactions during a significant flood event
Tipologia: Versione Editoriale (PDF)
Dimensione 5.27 MB
Formato Adobe PDF
5.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/342529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? ND
social impact