Wearable sensors currently represent a non-invasive way of monitoring health-related parameters, quite useful for both self-assessment and naturalistic studies. The autonomic imbalance experienced by athletes engaged in strenuous physical exercises could be also seen through this minimally obtrusive approach, possibly opening the field to a variety of novel investigations. Here, 41 athletes, taking part to two of the most strenuous ultra-trail competitions in Europe were assessed in terms of autonomic evaluation before, during and after the race, through a minimally invasive ECG system based on a fitness-like chest strap. Results showed an increased sympathetic activity both before and after the race, whereas vagal tone appeared increased during the race. Having proven the good feasibility of the proposed approach in such field, further investigations are needed to clarify the scientific basis explaining such modifications.

Feasibility of using a smart unobtrusive wearable system for the autonomic characterisation of endurance trail runners

Tonacci A;Sansone F;Billeci L;Domenici C;Conte R;Pratali L
2017

Abstract

Wearable sensors currently represent a non-invasive way of monitoring health-related parameters, quite useful for both self-assessment and naturalistic studies. The autonomic imbalance experienced by athletes engaged in strenuous physical exercises could be also seen through this minimally obtrusive approach, possibly opening the field to a variety of novel investigations. Here, 41 athletes, taking part to two of the most strenuous ultra-trail competitions in Europe were assessed in terms of autonomic evaluation before, during and after the race, through a minimally invasive ECG system based on a fitness-like chest strap. Results showed an increased sympathetic activity both before and after the race, whereas vagal tone appeared increased during the race. Having proven the good feasibility of the proposed approach in such field, further investigations are needed to clarify the scientific basis explaining such modifications.
2017
Istituto di Bioimmagini e Fisiologia Molecolare - IBFM
Istituto di Fisiologia Clinica - IFC
Autonomic Nervous System; Bluetooth; ECG; Sensors; Wearables
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/342555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact