Position determination of photon emitters and associated strong field parallax effects are investigated using relativistic optics when the photon orbits are confined to the equatorial plane of the Schwarzschild spacetime. We assume the emitter is at a fixed space position and the receiver moves along a circular geodesic orbit. This study requires solving the inverse problem of determining the (spatial) intersection point of two null geodesic initial data problems, serving as a simplified model for applications in relativistic astrometry as well as in radar and satellite communications.
Position determination and strong field parallax effects for photon emitters in the Schwarzschild spacetime
Bini D;
2017
Abstract
Position determination of photon emitters and associated strong field parallax effects are investigated using relativistic optics when the photon orbits are confined to the equatorial plane of the Schwarzschild spacetime. We assume the emitter is at a fixed space position and the receiver moves along a circular geodesic orbit. This study requires solving the inverse problem of determining the (spatial) intersection point of two null geodesic initial data problems, serving as a simplified model for applications in relativistic astrometry as well as in radar and satellite communications.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.