The precession angular velocity of a gyroscope moving along a general geodesic in the Kerr spacetime is analyzed using the geometric properties of the spacetime. Natural frames along the gyroscope world line are explicitly constructed by boosting frames adapted to fundamental observers. A novel geometrical description is given to Marck's construction of a parallel propagated orthonormal frame along a general geodesic, identifying and clarifying the special role played by the Carter family of observers in this general context, thus extending previous discussion for the equatorial plane case.
Gyroscope precession along general timelike geodesics in a Kerr black hole spacetime
Bini D;
2017
Abstract
The precession angular velocity of a gyroscope moving along a general geodesic in the Kerr spacetime is analyzed using the geometric properties of the spacetime. Natural frames along the gyroscope world line are explicitly constructed by boosting frames adapted to fundamental observers. A novel geometrical description is given to Marck's construction of a parallel propagated orthonormal frame along a general geodesic, identifying and clarifying the special role played by the Carter family of observers in this general context, thus extending previous discussion for the equatorial plane case.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.