Species of Alternaria are serious plant pathogens, causing major losses on a wide range of crops. Leaf blight symptoms were observed on tomato leaves, and samples were collected from various regions. Isolation was done from symptomatic tomato leaves, and 15 representatives were selected from a collection of 65 isolates of Alternaria species. The virulence of Alternaria isolates was investigated on detached leaves (DL) and whole plants of tomato cv. Super strain B. A phylogenetic analysis was performed based on three partial gene regions, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the RNA polymerase second largest subunit (RPB2) and the Alternaria major allergen gene (Alt a 1). The potentiality of Alternaria isolates to produce toxins was also investigated on the basis of thin-layer chromatography (TLC). Our investigations revealed that Alternaria isolates showed different levels of virulence either on tomato plants or DL. Based on the phylogeny of three genes, Alternaria isolates encompassed two species of small-spored morphospecies: A. alternata (14 isolates) and A. arborescens (single isolate). The produced toxins varied among Alternaria isolates with tenuazonic acid (TeA) being the most abundant mycotoxin produced by most isolates. This study highlighted on other Alternaria species in Egypt that might represent a serious concern for tomato producers as causal agents of leaf blight over other species, i.e. A. solani.
Phylogenetic, toxigenic and virulence profiles of Alternaria species causing leaf blight of tomato in Egypt
2018
Abstract
Species of Alternaria are serious plant pathogens, causing major losses on a wide range of crops. Leaf blight symptoms were observed on tomato leaves, and samples were collected from various regions. Isolation was done from symptomatic tomato leaves, and 15 representatives were selected from a collection of 65 isolates of Alternaria species. The virulence of Alternaria isolates was investigated on detached leaves (DL) and whole plants of tomato cv. Super strain B. A phylogenetic analysis was performed based on three partial gene regions, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the RNA polymerase second largest subunit (RPB2) and the Alternaria major allergen gene (Alt a 1). The potentiality of Alternaria isolates to produce toxins was also investigated on the basis of thin-layer chromatography (TLC). Our investigations revealed that Alternaria isolates showed different levels of virulence either on tomato plants or DL. Based on the phylogeny of three genes, Alternaria isolates encompassed two species of small-spored morphospecies: A. alternata (14 isolates) and A. arborescens (single isolate). The produced toxins varied among Alternaria isolates with tenuazonic acid (TeA) being the most abundant mycotoxin produced by most isolates. This study highlighted on other Alternaria species in Egypt that might represent a serious concern for tomato producers as causal agents of leaf blight over other species, i.e. A. solani.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.