Saccharomyces cerevisiae is the optimal eukaryotic model system to study mammalian biological responses. At the same time Saccharomyces cerevisiae is also widely utilized as a biotechnological tool in the food industry. Enological Saccharomyces cerevisiae strains have been so far routinely analyzed for their microbiological aspects. Nevertheless, wine yeasts are gaining an increasing interest in the last years since they strongly affect both the vinification process and the organoleptic properties of the final product wine. The protein repertoire is responsible of such features and, consequently, 2D-PAGE can be an useful tool to evaluate and select optimal wine yeast strains. We present here the first proteomic map of a wild-type wine Saccharomyces cerevisiae strain selected for the guided fermentation of very high quality wines.
Proteomic characterization of a wild-type wine strain of saccharomyces cerevisiae.
Scaloni A;
2003
Abstract
Saccharomyces cerevisiae is the optimal eukaryotic model system to study mammalian biological responses. At the same time Saccharomyces cerevisiae is also widely utilized as a biotechnological tool in the food industry. Enological Saccharomyces cerevisiae strains have been so far routinely analyzed for their microbiological aspects. Nevertheless, wine yeasts are gaining an increasing interest in the last years since they strongly affect both the vinification process and the organoleptic properties of the final product wine. The protein repertoire is responsible of such features and, consequently, 2D-PAGE can be an useful tool to evaluate and select optimal wine yeast strains. We present here the first proteomic map of a wild-type wine Saccharomyces cerevisiae strain selected for the guided fermentation of very high quality wines.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.