In this work a novel target detector is proposed that is nonparametric in terms of conditional probability density function (pdf) estimation and parametric with respect to the target strength of the additive model it relies upon. The variable bandwidth kernel density estimator is employed to estimate the conditional pdfs, whereas the target strength is estimated via the Maximum Likelihood approach. Experimental results over real hyperspectral data show that the detector succeeds in detecting target objects embedded in a complex background and in providing reasonable estimates for the target strengths.

HYBRID PARAMETRIC - NONPARAMETRIC TARGET DETECTOR FOR HYPERSPECTRAL IMAGES

Stefania Matteoli;
2018

Abstract

In this work a novel target detector is proposed that is nonparametric in terms of conditional probability density function (pdf) estimation and parametric with respect to the target strength of the additive model it relies upon. The variable bandwidth kernel density estimator is employed to estimate the conditional pdfs, whereas the target strength is estimated via the Maximum Likelihood approach. Experimental results over real hyperspectral data show that the detector succeeds in detecting target objects embedded in a complex background and in providing reasonable estimates for the target strengths.
2018
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
target detection
hybrid detectors
nonparametric methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact