Cells are minute typically too small to be seen by the human eye. Even so, the cellular world encompasses a range of scales, from roughly a tenth of a nanometer (10(-10) m) to a millimeter (10(-3) m) or larger, spanning seven orders of magnitude or more. Because they are so far from our experience, it is difficult for us to envision such scales. To help our imagination grasp such dimensions, I propose the adoption of a 'perceptive scale' that can facilitate a more direct experience of cellular sizes. From this, as I argue below, will stem a new perception also of biological shape, cellular space and dynamic processes.

Towards a perceptive understanding of size in cellular biology

Zoppe;Monica
2017

Abstract

Cells are minute typically too small to be seen by the human eye. Even so, the cellular world encompasses a range of scales, from roughly a tenth of a nanometer (10(-10) m) to a millimeter (10(-3) m) or larger, spanning seven orders of magnitude or more. Because they are so far from our experience, it is difficult for us to envision such scales. To help our imagination grasp such dimensions, I propose the adoption of a 'perceptive scale' that can facilitate a more direct experience of cellular sizes. From this, as I argue below, will stem a new perception also of biological shape, cellular space and dynamic processes.
2017
Visualization
Cdll biology
Structural biology
Perception
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact