Cells are minute typically too small to be seen by the human eye. Even so, the cellular world encompasses a range of scales, from roughly a tenth of a nanometer (10(-10) m) to a millimeter (10(-3) m) or larger, spanning seven orders of magnitude or more. Because they are so far from our experience, it is difficult for us to envision such scales. To help our imagination grasp such dimensions, I propose the adoption of a 'perceptive scale' that can facilitate a more direct experience of cellular sizes. From this, as I argue below, will stem a new perception also of biological shape, cellular space and dynamic processes.
Towards a perceptive understanding of size in cellular biology
Zoppe;Monica
2017
Abstract
Cells are minute typically too small to be seen by the human eye. Even so, the cellular world encompasses a range of scales, from roughly a tenth of a nanometer (10(-10) m) to a millimeter (10(-3) m) or larger, spanning seven orders of magnitude or more. Because they are so far from our experience, it is difficult for us to envision such scales. To help our imagination grasp such dimensions, I propose the adoption of a 'perceptive scale' that can facilitate a more direct experience of cellular sizes. From this, as I argue below, will stem a new perception also of biological shape, cellular space and dynamic processes.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.