In this paper, the compressive behaviour of an omega stiffened composite panel with a large notch damage has been investigated. The influence of intra-laminar and inter-laminar damage onset and evolution on the compressive behaviour of a stiffened panel, characterised by a cut-out located in the middle bay and oriented at 45° with respect to the load direction, has been studied. A numerical model, taking into account delamination and fibre-matrix damage evolution, respectively, by means of cohesive elements and Hashin's failure criteria together with material degradation rules, has been adopted. By comparing the performed numerical analyses, taking into account intra-laminar and inter-laminar damages, the effects of the interaction between delaminations and fibre-matrix damage in the large notch area on the global compressive behaviour of the omega stiffened composite panel have been assessed and critically discussed.

Modelling the damage evolution in notched omega stiffened composite panels under compression

Zarrelli M;
2017

Abstract

In this paper, the compressive behaviour of an omega stiffened composite panel with a large notch damage has been investigated. The influence of intra-laminar and inter-laminar damage onset and evolution on the compressive behaviour of a stiffened panel, characterised by a cut-out located in the middle bay and oriented at 45° with respect to the load direction, has been studied. A numerical model, taking into account delamination and fibre-matrix damage evolution, respectively, by means of cohesive elements and Hashin's failure criteria together with material degradation rules, has been adopted. By comparing the performed numerical analyses, taking into account intra-laminar and inter-laminar damages, the effects of the interaction between delaminations and fibre-matrix damage in the large notch area on the global compressive behaviour of the omega stiffened composite panel have been assessed and critically discussed.
2017
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Cohesive model
Delamination
Finite element model
Intra-laminar damage
Large notch damage
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? ND
social impact