Sb2O5·nH2O hydrosols are proposed as a new form of treatment for cutaneous leishmaniasis caused by Leishmania amazonensis. The NPs penetrate directly into the affected cells, creating a high local concentration of the drug, a precondition to overcoming the parasite resistance to molecular forms of pentavalent antimonials. The nanohybrids are more effective at a lower dose, when compared to MA, the molecular drug. Our data suggest that the new form of treatment has the potential to reduce and simplify the course of cutaneous leishmaniasis treatment. At the same time, Sb2O5·nH2O hydrosols provide an opportunity to avoid toxic antimony (V) spreading throughout the body.

Nanoscaled hydrated antimony (V) oxide as a new approach to first-line antileishmanial drugs

Gentile G;Carfagna C;
2016

Abstract

Sb2O5·nH2O hydrosols are proposed as a new form of treatment for cutaneous leishmaniasis caused by Leishmania amazonensis. The NPs penetrate directly into the affected cells, creating a high local concentration of the drug, a precondition to overcoming the parasite resistance to molecular forms of pentavalent antimonials. The nanohybrids are more effective at a lower dose, when compared to MA, the molecular drug. Our data suggest that the new form of treatment has the potential to reduce and simplify the course of cutaneous leishmaniasis treatment. At the same time, Sb2O5·nH2O hydrosols provide an opportunity to avoid toxic antimony (V) spreading throughout the body.
2016
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
nanoparticles
leishmaniasis
hydrated antimony (V) oxide
TEM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact