Due to the pervasive diffusion of personal mobile and IoT devices, many "smart environments" (e.g., smart cities and smart factories) will be, generators of huge amounts of data. Currently, analysis of this data is typically achieved through centralised cloudbased services. However, according to many studies, this approach may present significant issues from the standpoint of data ownership, as well as wireless network capacity. In this paper, we exploit the fog computing paradigm to move computation close to where data is produced. We exploit a well-known distributed machine learning framework (Hypothesis Transfer Learning), and perform data analytics on mobile nodes passing by IoT devices, in addition to fog gateways at the edge of the network infrastructure. We analyse the performance of different configurations of the distributed learning framework, in terms of (i) accuracy obtained in the learning task and (ii) energy spent to send data between the involved nodes. Specifically, we consider reference wireless technologies for communication between the different types of nodes we consider, e.g. LTE, Nb-IoT, 802.15.4, 802.11, etc. Our results show that collecting data through the mobile nodes and executing the distributed analytics using short-range communication technologies, such as 802.15.4 and 802.11, allows to strongly reduce the energy consumption of the system up to 94% with a loss in accuracy w.r.t. a centralised cloud solution up to 2%. (C) 2018 Elsevier B.V. All rights reserved.

Energy efficient distributed analytics at the edge of the network for IoT environments

L Valerio;M Conti;A Passarella
2018

Abstract

Due to the pervasive diffusion of personal mobile and IoT devices, many "smart environments" (e.g., smart cities and smart factories) will be, generators of huge amounts of data. Currently, analysis of this data is typically achieved through centralised cloudbased services. However, according to many studies, this approach may present significant issues from the standpoint of data ownership, as well as wireless network capacity. In this paper, we exploit the fog computing paradigm to move computation close to where data is produced. We exploit a well-known distributed machine learning framework (Hypothesis Transfer Learning), and perform data analytics on mobile nodes passing by IoT devices, in addition to fog gateways at the edge of the network infrastructure. We analyse the performance of different configurations of the distributed learning framework, in terms of (i) accuracy obtained in the learning task and (ii) energy spent to send data between the involved nodes. Specifically, we consider reference wireless technologies for communication between the different types of nodes we consider, e.g. LTE, Nb-IoT, 802.15.4, 802.11, etc. Our results show that collecting data through the mobile nodes and executing the distributed analytics using short-range communication technologies, such as 802.15.4 and 802.11, allows to strongly reduce the energy consumption of the system up to 94% with a loss in accuracy w.r.t. a centralised cloud solution up to 2%. (C) 2018 Elsevier B.V. All rights reserved.
2018
Istituto di informatica e telematica - IIT
Iot
Big data
Smart cities
Distributed learning
Communications efficiency
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact