The performance of microarray assays results from the optimization of several parameters: in particular, the physical-chemical properties of the surface play a pivotal role in determining the robustness of the technology. Usually, microarray substrates are entirely modified with coatings able to bind, covalently or not, bioprobes. Here we present a new, fully automated approach for the immobilization of biomolecules, based on the deposition of pL amounts of water solutions of DMA based copolymers on an uncoated surface, followed by the deposition, on the same spot, of the probe. Starting from a common precursor, polymers with different characteristics and functionalities are obtained by post-polymerization modification and by combining different monomers during the synthesis. This strategy, allows to functionalize and tailor the surface properties of discrete areas of the same array with different chemistries, that coexist on a single substrate. As a consequence, probes with different functionalities are bound simultaneously to neutral, positively, negatively charged, hydrophobic, hydrophilic polymers, in micrometer-sized spots. The proposed polymer array, applicable to both DNA or protein, offers advantages in terms of time and costs reduction, since pretreatment and coating steps are totally avoided, and the requested polymer amount is extremely low. Moreover, it provides a strategy perfectly suitable for miniaturization applicable to integrated biosensors or Lab-on-a-chip devices.
Array of multifunctional polymers for localized immobilization of biomolecules on microarray substrates
Sola Laura;Damin Francesco;Chiari Marcella
2019
Abstract
The performance of microarray assays results from the optimization of several parameters: in particular, the physical-chemical properties of the surface play a pivotal role in determining the robustness of the technology. Usually, microarray substrates are entirely modified with coatings able to bind, covalently or not, bioprobes. Here we present a new, fully automated approach for the immobilization of biomolecules, based on the deposition of pL amounts of water solutions of DMA based copolymers on an uncoated surface, followed by the deposition, on the same spot, of the probe. Starting from a common precursor, polymers with different characteristics and functionalities are obtained by post-polymerization modification and by combining different monomers during the synthesis. This strategy, allows to functionalize and tailor the surface properties of discrete areas of the same array with different chemistries, that coexist on a single substrate. As a consequence, probes with different functionalities are bound simultaneously to neutral, positively, negatively charged, hydrophobic, hydrophilic polymers, in micrometer-sized spots. The proposed polymer array, applicable to both DNA or protein, offers advantages in terms of time and costs reduction, since pretreatment and coating steps are totally avoided, and the requested polymer amount is extremely low. Moreover, it provides a strategy perfectly suitable for miniaturization applicable to integrated biosensors or Lab-on-a-chip devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


