We identify a new material phenomenon, where minute mechanical manipulations induce pronounced global structural reconfigurations in faceted multiwalled nanotubes. This behavior has strong implications on the tribological properties of these systems and may be the key to understand the enhanced interwall friction recently measured for boron-nitride nanotubes with respect to their carbon counterparts. Notably, the fast rotation of helical facets in these systems upon coaxial sliding may serve as a nanoscale Archimedean screw for directional transport of physisorbed molecules.

Smallest Archimedean Screw: Facet Dynamics and Friction in Multiwalled Nanotubes

Vanossi A;Tosatti E
2017

Abstract

We identify a new material phenomenon, where minute mechanical manipulations induce pronounced global structural reconfigurations in faceted multiwalled nanotubes. This behavior has strong implications on the tribological properties of these systems and may be the key to understand the enhanced interwall friction recently measured for boron-nitride nanotubes with respect to their carbon counterparts. Notably, the fast rotation of helical facets in these systems upon coaxial sliding may serve as a nanoscale Archimedean screw for directional transport of physisorbed molecules.
2017
Istituto Officina dei Materiali - IOM -
faceting
friction
Nanotube
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/343944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact