A trypsin inhibitor from wheat kernel (WTI) was found to have a strong antifungal activity against a number of pathogenic fungi and to inhibit fungal trypsin-like activity. WTI inhibited in vitro spore germination and hyphal growth of pathogens, with protein concentration required for 50% growth inhibition (IC50) values ranging from 111.7 to above 500 mu g/ml. As observed by electron microscopy, WTI determined morphological alterations represented by hyphal growth inhibition and branching. One of the fungal species tested, Botrytis cinerea produced a trypsin-like protease, which was inhibited by the trypsin inhibitor. WTI, as well as other seed defence proteins, appear to be an important resistance factor in wheat kernels during rest and early germination when plants are particularly exposed to attack by potential soilborne pathogens.
Antifungal activity of a Bowman-Birk-type trypsin inhibitor from wheat kernel
Leonardi L;
2000
Abstract
A trypsin inhibitor from wheat kernel (WTI) was found to have a strong antifungal activity against a number of pathogenic fungi and to inhibit fungal trypsin-like activity. WTI inhibited in vitro spore germination and hyphal growth of pathogens, with protein concentration required for 50% growth inhibition (IC50) values ranging from 111.7 to above 500 mu g/ml. As observed by electron microscopy, WTI determined morphological alterations represented by hyphal growth inhibition and branching. One of the fungal species tested, Botrytis cinerea produced a trypsin-like protease, which was inhibited by the trypsin inhibitor. WTI, as well as other seed defence proteins, appear to be an important resistance factor in wheat kernels during rest and early germination when plants are particularly exposed to attack by potential soilborne pathogens.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.