Wildfire simulators based on empirical or physical models need to be locally calibrated and validated when used under conditions that differ from those where the simulators were originally developed. This study aims to calibrate the FARSITE fire spread model considering a set of recent wildfires that occurred in northern Iranian forests. Site-specific fuel models in the study areas were selected by sampling the main natural vegetation type complexes and assigning standard fuel models. Overall, simulated fires presented reliable outputs that accurately replicated the observed fire perimeters and behavior. Standard fuel models of Scott and Burgan (2005) afforded better accuracy in the simulated fire perimeters than the standard fuel models of Anderson (1982). The best match between observed and modeled burned areas was observed on herbaceous fuel models. Fire modeling showed a high potential for estimating spatial variability in fire spread and behavior in the study areas. This work represents a first step in the application of fire spread modeling in northern Iran for wildfire risk monitoring and management.

Calibration of FARSITE simulator in northern Iranian forests

Salis M;
2015

Abstract

Wildfire simulators based on empirical or physical models need to be locally calibrated and validated when used under conditions that differ from those where the simulators were originally developed. This study aims to calibrate the FARSITE fire spread model considering a set of recent wildfires that occurred in northern Iranian forests. Site-specific fuel models in the study areas were selected by sampling the main natural vegetation type complexes and assigning standard fuel models. Overall, simulated fires presented reliable outputs that accurately replicated the observed fire perimeters and behavior. Standard fuel models of Scott and Burgan (2005) afforded better accuracy in the simulated fire perimeters than the standard fuel models of Anderson (1982). The best match between observed and modeled burned areas was observed on herbaceous fuel models. Fire modeling showed a high potential for estimating spatial variability in fire spread and behavior in the study areas. This work represents a first step in the application of fire spread modeling in northern Iran for wildfire risk monitoring and management.
2015
--
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/344623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 21
social impact