Web search engines are composed by thousands of query processing nodes, i.e., servers dedicated to process user queries. Such many servers consume a significant amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low latencies, since users expect sub-second response times (e.g., 500 ms). However, users can hardly notice response times that are faster than their expectations. Hence, we propose the Predictive Energy Saving Online Scheduling Algorithm ( PESOS) to select the most appropriate CPU frequency to process a query on a per-core basis. PESOS aims at process queries by their deadlines, and leverage high-level scheduling information to reduce the CPU energy consumption of a query processing node. PESOS bases its decision on query efficiency predictors, estimating the processing volume and processing time of a query. We experimentally evaluate PESOS upon the TREC ClueWeb09B collection and the MSN2006 query log. Results show that PESOS can reduce the CPU energy consumption of a query processing node up to similar to 48 percent compared to a system running at maximum CPU core frequency. PESOS outperforms also the best state-of-the-art competitor with a similar to 20 percent energy saving, while the competitor requires a fine parameter tuning and it may incurs in uncontrollable latency violations.
Energy-efficient query processing in web search engines
Catena M;Tonellotto N
2017
Abstract
Web search engines are composed by thousands of query processing nodes, i.e., servers dedicated to process user queries. Such many servers consume a significant amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low latencies, since users expect sub-second response times (e.g., 500 ms). However, users can hardly notice response times that are faster than their expectations. Hence, we propose the Predictive Energy Saving Online Scheduling Algorithm ( PESOS) to select the most appropriate CPU frequency to process a query on a per-core basis. PESOS aims at process queries by their deadlines, and leverage high-level scheduling information to reduce the CPU energy consumption of a query processing node. PESOS bases its decision on query efficiency predictors, estimating the processing volume and processing time of a query. We experimentally evaluate PESOS upon the TREC ClueWeb09B collection and the MSN2006 query log. Results show that PESOS can reduce the CPU energy consumption of a query processing node up to similar to 48 percent compared to a system running at maximum CPU core frequency. PESOS outperforms also the best state-of-the-art competitor with a similar to 20 percent energy saving, while the competitor requires a fine parameter tuning and it may incurs in uncontrollable latency violations.File | Dimensione | Formato | |
---|---|---|---|
prod_384712-doc_132931.pdf
solo utenti autorizzati
Descrizione: Energy-efficient query processing in web search engines
Tipologia:
Versione Editoriale (PDF)
Dimensione
639.1 kB
Formato
Adobe PDF
|
639.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.