Gold nanorods (GNRs) are important platforms for biosensing and drug delivery. As for most nanomaterials, appropriate coatings such as polyethylene glycol (PEG) are needed to stabilize GNRs within biological fluids. We show here that the interactions of GNRswith proteins can be finely modulated through surfacemodification using PEG-containing chains bearing charged headgroups. Interestingly, introduction of amino or carboxylate groups produces relevant and differential changes in GNR interactions with three representative proteins: lysozyme, cytochrome c, and bovine serum albumin. These effects were explored through the direct monitoring of plasmonic bands of the GNRs and are supported by independent dynamic light scattering (DLS) and circular dichroism (CD) determinations. Notably, GNR-protein interactions observed for these charged GNRs can be almost completely reversed by salt addition. These observations demonstrate the importance of electrostatic effects in governing GNR-protein interactions, and provide a basis for new sensing and delivery platforms

Tuning the interactions of PEG-coated gold nanorods with BSA and model proteins through insertion of amino or carboxylate groups

Sonia Centi;Roberto Pini;
2015

Abstract

Gold nanorods (GNRs) are important platforms for biosensing and drug delivery. As for most nanomaterials, appropriate coatings such as polyethylene glycol (PEG) are needed to stabilize GNRs within biological fluids. We show here that the interactions of GNRswith proteins can be finely modulated through surfacemodification using PEG-containing chains bearing charged headgroups. Interestingly, introduction of amino or carboxylate groups produces relevant and differential changes in GNR interactions with three representative proteins: lysozyme, cytochrome c, and bovine serum albumin. These effects were explored through the direct monitoring of plasmonic bands of the GNRs and are supported by independent dynamic light scattering (DLS) and circular dichroism (CD) determinations. Notably, GNR-protein interactions observed for these charged GNRs can be almost completely reversed by salt addition. These observations demonstrate the importance of electrostatic effects in governing GNR-protein interactions, and provide a basis for new sensing and delivery platforms
2015
Istituto di Fisica Applicata - IFAC
nanoparticles
PEGylation
proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/344904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact