Two samples of Ultra-High-Temperature Ceramic Matrix Composites, with carbon fibers in a ZrB2-SiC matrix, were exposed to supersonic dissociated air flow, simulating the atmospheric re-entry environment, in an arc-heated facility at specific total enthalpies up to 20 MJ/kg. Surface temperatures, exceeding 2400 K, were monitored by non-intrusive infrared equipment, which allowed detecting thermo-chemical surface instability phenomena. A zirconium oxide layer formed on the surface, below which the original material is perfectly preserved. Numerical simulations allowed describing the flow field around the samples and characterizing the materials behavior, in terms of thermal conductivity, catalycity and oxidation effects at high enthalpies.

Arc-jet wind tunnel characterization of ultra-high-temperature ceramic matrix composites

Laura Silvestroni;Antonio Vinci;Luca Zoli;Diletta Sciti
2019

Abstract

Two samples of Ultra-High-Temperature Ceramic Matrix Composites, with carbon fibers in a ZrB2-SiC matrix, were exposed to supersonic dissociated air flow, simulating the atmospheric re-entry environment, in an arc-heated facility at specific total enthalpies up to 20 MJ/kg. Surface temperatures, exceeding 2400 K, were monitored by non-intrusive infrared equipment, which allowed detecting thermo-chemical surface instability phenomena. A zirconium oxide layer formed on the surface, below which the original material is perfectly preserved. Numerical simulations allowed describing the flow field around the samples and characterizing the materials behavior, in terms of thermal conductivity, catalycity and oxidation effects at high enthalpies.
2019
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Ceramic matrix composites
Zirconium
SEM
Modelling studies
Oxidation
High temperature corrosion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/344965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact