Falls are one of the main causes of disability and death among the elderly. Several inertial-based wearable devices for automatic fall and pre-fall detection have been realized. They use the threshold-based approach above all and their mean lead-time before the impact is about 200-500 ms. The main purpose of the work was to develop a framework for fall risk assessment considering the lower limb surface electromyography. The user's muscle behavior was chosen because it may allow a faster recognition of an imbalance event than the user's kinematic evaluation. Moreover, a machine learning scheme was adopted to overcome the drawbacks of well-known threshold approaches, in which the algorithm parameters have to be set according to the users' specific physical characteristics. Ten kinds of time-domain features, commonly used in the analysis of the lower-limb muscle activity, were investigated and the Markov Random Field based Fisher-Markov selector was used to reduce the signal processing complexity. The supervised classification phase was obtained through a low computational cost and a high classification accuracy Linear Discriminant Analysis. The developed system showed high performance in terms of sensitivity and specificity (about 90%) in controlled conditions, with a mean lead-time before the impact of about 775 ms.

Fall risk evaluation by surface electromyography technology

Leone Alessandro;Rescio Gabriele;Siciliano Pietro
2018

Abstract

Falls are one of the main causes of disability and death among the elderly. Several inertial-based wearable devices for automatic fall and pre-fall detection have been realized. They use the threshold-based approach above all and their mean lead-time before the impact is about 200-500 ms. The main purpose of the work was to develop a framework for fall risk assessment considering the lower limb surface electromyography. The user's muscle behavior was chosen because it may allow a faster recognition of an imbalance event than the user's kinematic evaluation. Moreover, a machine learning scheme was adopted to overcome the drawbacks of well-known threshold approaches, in which the algorithm parameters have to be set according to the users' specific physical characteristics. Ten kinds of time-domain features, commonly used in the analysis of the lower-limb muscle activity, were investigated and the Markov Random Field based Fisher-Markov selector was used to reduce the signal processing complexity. The supervised classification phase was obtained through a low computational cost and a high classification accuracy Linear Discriminant Analysis. The developed system showed high performance in terms of sensitivity and specificity (about 90%) in controlled conditions, with a mean lead-time before the impact of about 775 ms.
2018
Istituto per la Microelettronica e Microsistemi - IMM
9781538607749
Fall risk assessment
Feature Extraction
Feature Selection
Machine Learning
Surface Electromyography
Wearable Devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/345378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact