Starting from expressions in Connor et al. (Phys. Fluids, vol. 31, 1988, p. 577), we derive a one-dimensional tearing equation similar to the approximate equation obtained by Hegna & Callen (Phys. Plasmas, vol. 1, 1994, p. 2308) and Nishimura et al. (Phys. Plasmas, vol. 5, 1998, p. 4292), but for more realistic toroidal equilibria. The intention is to use this approximation to explore the role of steep profiles, bootstrap currents and strong shaping in the vicinity of a separatrix, on the stability of tearing modes which are resonant in the H-mode pedestal region of finite aspect ratio, shaped cross-section tokamaks, e.g. the Joint European Torus (JET). We discuss how this one-dimensional model for tearing modes, which assumes a single poloidal harmonic for the perturbed poloidal flux, compares with a model that includes poloidal coupling Fitzpatrick et al. (Nucl. Fusion, vol. 33, 1993, p. 1533).
A one-dimensional tearing mode equation for pedestal stability studies in tokamaks
Marchetto, C.;
2018
Abstract
Starting from expressions in Connor et al. (Phys. Fluids, vol. 31, 1988, p. 577), we derive a one-dimensional tearing equation similar to the approximate equation obtained by Hegna & Callen (Phys. Plasmas, vol. 1, 1994, p. 2308) and Nishimura et al. (Phys. Plasmas, vol. 5, 1998, p. 4292), but for more realistic toroidal equilibria. The intention is to use this approximation to explore the role of steep profiles, bootstrap currents and strong shaping in the vicinity of a separatrix, on the stability of tearing modes which are resonant in the H-mode pedestal region of finite aspect ratio, shaped cross-section tokamaks, e.g. the Joint European Torus (JET). We discuss how this one-dimensional model for tearing modes, which assumes a single poloidal harmonic for the perturbed poloidal flux, compares with a model that includes poloidal coupling Fitzpatrick et al. (Nucl. Fusion, vol. 33, 1993, p. 1533).| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_395567-doc_136948.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
263.35 kB
Formato
Adobe PDF
|
263.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


