Time-varying network topologies can deeply influence dynamical processes mediated by them. Memory effects in the pattern of interactions among individuals are also known to affect how diffusive and spreading phenomena take place. In this paper we analyze the combined effect of these two ingredients on epidemic dynamics on networks. We study the susceptible-infected-susceptible (SIS) and the susceptible-infected-recovered (SIR) models on the recently introduced activity-driven networks with memory. By means of an activity-based mean-field approach, we derive, in the long-time limit, analytical predictions for the epidemic threshold as a function of the parameters describing the distribution of activities and the strength of the memory effects. Our results show that memory reduces the threshold, which is the same for SIS and SIR dynamics, therefore favoring epidemic spreading. The theoretical approach perfectly agrees with numerical simulations in the long-time asymptotic regime. Strong aging effects are present in the preasymptotic regime and the epidemic threshold is deeply affected by the starting time of the epidemics. We discuss in detail the origin of the model-dependent preasymptotic corrections, whose understanding could potentially allow for epidemic control on correlated temporal networks.

Epidemic spreading and aging in temporal networks with memory

Vezzani, Alessandro;Castellano, Claudio;
2018

Abstract

Time-varying network topologies can deeply influence dynamical processes mediated by them. Memory effects in the pattern of interactions among individuals are also known to affect how diffusive and spreading phenomena take place. In this paper we analyze the combined effect of these two ingredients on epidemic dynamics on networks. We study the susceptible-infected-susceptible (SIS) and the susceptible-infected-recovered (SIR) models on the recently introduced activity-driven networks with memory. By means of an activity-based mean-field approach, we derive, in the long-time limit, analytical predictions for the epidemic threshold as a function of the parameters describing the distribution of activities and the strength of the memory effects. Our results show that memory reduces the threshold, which is the same for SIS and SIR dynamics, therefore favoring epidemic spreading. The theoretical approach perfectly agrees with numerical simulations in the long-time asymptotic regime. Strong aging effects are present in the preasymptotic regime and the epidemic threshold is deeply affected by the starting time of the epidemics. We discuss in detail the origin of the model-dependent preasymptotic corrections, whose understanding could potentially allow for epidemic control on correlated temporal networks.
2018
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto dei Sistemi Complessi - ISC
Dynamic models
Analytical predictions
Epidemic spreading
Epidemic threshold
Mean field approach
File in questo prodotto:
File Dimensione Formato  
prod_397806-doc_137708.pdf

accesso aperto

Descrizione: Epidemic spreading and aging in temporal networks with memory
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 409.15 kB
Formato Adobe PDF
409.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/345930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact