Revealing phase transitions of solids through mechanical anomalies in the friction of nanotips sliding on their surfaces, a successful approach for continuous transitions, is still an unexplored tool for first-order ones. Owing to slow nucleation, first-order structural transformations occur with hysteresis, comprised between two spinodal temperatures where, on both sides of the thermodynamic transition, one or the other metastable free energy branches terminates. The spinodal transformation, a collective one-shot event without heat capacity anomaly, is easy to trigger by a weak external perturbation. Here we show that even the gossamer mechanical action of an AFM-tip can locally act as a trigger, narrowly preempting the spontaneous spinodal transformation, and making it observable as a nanofrictional anomaly. Confirming this expectation, the CCDW-NCCDW first-order transition of the important layer compound 1T-TaS2 is shown to provide a demonstration of this effect. © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft.

Friction anomalies at first-order transition spinodals: 1T-TaS2

Santoro GE;Tosatti E
2018

Abstract

Revealing phase transitions of solids through mechanical anomalies in the friction of nanotips sliding on their surfaces, a successful approach for continuous transitions, is still an unexplored tool for first-order ones. Owing to slow nucleation, first-order structural transformations occur with hysteresis, comprised between two spinodal temperatures where, on both sides of the thermodynamic transition, one or the other metastable free energy branches terminates. The spinodal transformation, a collective one-shot event without heat capacity anomaly, is easy to trigger by a weak external perturbation. Here we show that even the gossamer mechanical action of an AFM-tip can locally act as a trigger, narrowly preempting the spontaneous spinodal transformation, and making it observable as a nanofrictional anomaly. Confirming this expectation, the CCDW-NCCDW first-order transition of the important layer compound 1T-TaS2 is shown to provide a demonstration of this effect. © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft.
2018
Istituto Officina dei Materiali - IOM -
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact