We study the Couette flow of a quasi-2d soft-glassy material in a Hele-Shaw geometry. The material is chosen to be above the jamming point, where a yield stress sigma(Upsilon) emerges, below which the material deforms elastically and above which it flows like a complex fluid according to a Herschel-Bulkley (HB) rheology. Simultaneously, the effect of the confining plates is modelled as an effective linear friction law, while the walls aside the Hele-Shaw cell are sufficiently close to each other to allow visible cooperativity effects in the velocity profiles (Goyon et al., 2008). The effects of cooperativity are parametrized with a steady-state diffusion-relaxation equation for the fluidity field f = gamma over dot/sigma , defined as the ratio between shear rate.j/and shear stress cr. For particular rheological flow-curves (Bingham fluids), the problem is tackled analytically: we explore the two regimes sigma >> sigma(Upsilon) and alpha approximate to sigma(Upsilon) and quantify the effect of the extra localisation induced by the wall friction. Other rheo-thinning fluids are explored with the help of numerical simulations based on lattice Boltzmann models, revealing a robustness of the analytical findings. Synergies and comparisons with other existing works in the literature (Barry et al., 2011) are also discussed. (C) 2015 Elsevier B.V. All rights reserved.

Non-locality and viscous drag effects on the shear localisation in soft-glassy materials

Scagliarini A;
2015

Abstract

We study the Couette flow of a quasi-2d soft-glassy material in a Hele-Shaw geometry. The material is chosen to be above the jamming point, where a yield stress sigma(Upsilon) emerges, below which the material deforms elastically and above which it flows like a complex fluid according to a Herschel-Bulkley (HB) rheology. Simultaneously, the effect of the confining plates is modelled as an effective linear friction law, while the walls aside the Hele-Shaw cell are sufficiently close to each other to allow visible cooperativity effects in the velocity profiles (Goyon et al., 2008). The effects of cooperativity are parametrized with a steady-state diffusion-relaxation equation for the fluidity field f = gamma over dot/sigma , defined as the ratio between shear rate.j/and shear stress cr. For particular rheological flow-curves (Bingham fluids), the problem is tackled analytically: we explore the two regimes sigma >> sigma(Upsilon) and alpha approximate to sigma(Upsilon) and quantify the effect of the extra localisation induced by the wall friction. Other rheo-thinning fluids are explored with the help of numerical simulations based on lattice Boltzmann models, revealing a robustness of the analytical findings. Synergies and comparisons with other existing works in the literature (Barry et al., 2011) are also discussed. (C) 2015 Elsevier B.V. All rights reserved.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
Soft-glassy materials
Rheology
Localisation
Confinement
Lattice Boltzmann models
Binary liquids
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact