Long-term exposure to ultraviolet (UV) radiation is associated with pathological alterations of the retinal pigment epithelium (RPE). It has been indicated that Cortistatin (CST) and somatostatin (SST) are able to inhibit the neurodegeneration of the RPE associated with diabetic retinopathy and retinal ischemia via activation of SST receptors (SSTRs). To the best of our knowledge, the present study indicated for the first time that treatment with UV-A (30 and 60 min) causes an increase of CST expression, rather than SST, which was linked with the upregulation of STTR3,4,5 subtype receptor gene expression levels. The study revealed that: I) SST and CST mRNA expression were both detected under basal conditions in a human retinal pigment epithelial cell line (Arpe-19); ii) SST expression remained constant from baseline to 1 h of UV-A treatment; iii) CST mRNA expression levels were 80 times increased compared with time 0 and after 30 min of exposition to ultraviolet irradiation; iv) SSTR1, SSTR2 mRNA and low levels of SSTR4 were expressed in basal conditions, whereas SSTR3 and SSTR5 mRNA were not detected under the same conditions; and v) only SSTR3, SSTR4 and SSTR5 were overexpressed after UV-A treatment, although in a different way. In conclusion, the findings provide reasonable evidence to support the pathophysiological role of the CST/SST/SSTRs system in the adaptive response of the RPE exposed to UV-A radiation.

Ultraviolet A radiation induces cortistatin overexpression and activation of somatostatin receptors in ARPE-19 cells

Clementi ME;Sampaolese B;
2018

Abstract

Long-term exposure to ultraviolet (UV) radiation is associated with pathological alterations of the retinal pigment epithelium (RPE). It has been indicated that Cortistatin (CST) and somatostatin (SST) are able to inhibit the neurodegeneration of the RPE associated with diabetic retinopathy and retinal ischemia via activation of SST receptors (SSTRs). To the best of our knowledge, the present study indicated for the first time that treatment with UV-A (30 and 60 min) causes an increase of CST expression, rather than SST, which was linked with the upregulation of STTR3,4,5 subtype receptor gene expression levels. The study revealed that: I) SST and CST mRNA expression were both detected under basal conditions in a human retinal pigment epithelial cell line (Arpe-19); ii) SST expression remained constant from baseline to 1 h of UV-A treatment; iii) CST mRNA expression levels were 80 times increased compared with time 0 and after 30 min of exposition to ultraviolet irradiation; iv) SSTR1, SSTR2 mRNA and low levels of SSTR4 were expressed in basal conditions, whereas SSTR3 and SSTR5 mRNA were not detected under the same conditions; and v) only SSTR3, SSTR4 and SSTR5 were overexpressed after UV-A treatment, although in a different way. In conclusion, the findings provide reasonable evidence to support the pathophysiological role of the CST/SST/SSTRs system in the adaptive response of the RPE exposed to UV-A radiation.
2018
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
ARPE-19 cell line
Cortistatin
Neuropeptides
Retinal pigment epithelium
Somatostatin
Somatostatin receptors
Ultraviolet A radiation exposure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact