A new class of lightweight smart materials based on a polymeric matrix with embedded magnetic micro-particles was developed. The application of a magnetic field (MF) during the foaming of samples induced, along the MF lines, the alignment of magnetic particles dispersed in the polymer thus forming chain-like reinforcing structures. The aligned micro-particles induced an anisotropic mechanical behaviour, strongly improving the mechanical stiffness and strength along the MF direction compared to unfilled systems. Most notably, the chain-like structures imparted a magneto-sensitive behaviour to the lightweight materials. In fact, foams showed a direct relationship between the foams elastic response and the intensity as well as the shape of the time dependent MF applied during their magneto-elastic characterisation. This magneto-elastic behaviour has been obtained at low MF strength (below 200 kA m(-1)).

Polymeric foam-ferromagnet composites as smart lightweight materials

Sorrentino L
2016

Abstract

A new class of lightweight smart materials based on a polymeric matrix with embedded magnetic micro-particles was developed. The application of a magnetic field (MF) during the foaming of samples induced, along the MF lines, the alignment of magnetic particles dispersed in the polymer thus forming chain-like reinforcing structures. The aligned micro-particles induced an anisotropic mechanical behaviour, strongly improving the mechanical stiffness and strength along the MF direction compared to unfilled systems. Most notably, the chain-like structures imparted a magneto-sensitive behaviour to the lightweight materials. In fact, foams showed a direct relationship between the foams elastic response and the intensity as well as the shape of the time dependent MF applied during their magneto-elastic characterisation. This magneto-elastic behaviour has been obtained at low MF strength (below 200 kA m(-1)).
2016
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
foams
magnetic particles
reinforcement
magnetic field
magneto-elastic behaviour
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 21
social impact