The study of the properties of quantum particles in a periodic potential subjected to a magnetic field is an active area of research both in physics and mathematics, and it has been and is yet deeply investigated. In this chapter we discuss how to implement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After reviewing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold setups, we study cubic lattice tight-bindingmodels with commensurate flux.We finally discuss applications of gauge potentials in one-dimensional rings.

Abelian gauge potentials on cubic lattices

Trombettoni A
2017

Abstract

The study of the properties of quantum particles in a periodic potential subjected to a magnetic field is an active area of research both in physics and mathematics, and it has been and is yet deeply investigated. In this chapter we discuss how to implement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After reviewing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold setups, we study cubic lattice tight-bindingmodels with commensurate flux.We finally discuss applications of gauge potentials in one-dimensional rings.
2017
Istituto Officina dei Materiali - IOM -
Abelian gauge potentials
Lattice models
Quantum entanglement
Quantum transfer
Ultracold atoms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/346627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact