In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat-to-work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be obtained without greatly reducing power.

Thermodynamic Bound on Heat-to-Power Conversion

Benenti G;
2018

Abstract

In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat-to-work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in the thermodynamic limit, the much more favorable linear-response bound. This result is rooted in the possibility for interacting systems to achieve the Carnot efficiency at the thermodynamic limit without delta-energy filtering, so that large efficiencies can be obtained without greatly reducing power.
2018
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/347038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact