We perform a thorough study of the extended Hubbard model featuring local and nearest-neighbor Coulomb repulsion. Using the dynamical mean-field theory we investigated the zero-temperature phase diagram of this model as a function of the chemical doping. The interplay between local and nonlocal interactions drives a variety of phase transitions connecting two distinct charge-ordered insulators, i.e., half filled and quarter filled, a charge-ordered metal and a Mott-insulating phase. We characterize these transitions and the relative stability of the solutions and we show that the two interactions conspire to stabilize the quarter-filled charge-ordered phase.
Doping-driven metal-insulator transitions and charge orderings in the extended Hubbard model
Capone M;Amaricci A
2017
Abstract
We perform a thorough study of the extended Hubbard model featuring local and nearest-neighbor Coulomb repulsion. Using the dynamical mean-field theory we investigated the zero-temperature phase diagram of this model as a function of the chemical doping. The interplay between local and nonlocal interactions drives a variety of phase transitions connecting two distinct charge-ordered insulators, i.e., half filled and quarter filled, a charge-ordered metal and a Mott-insulating phase. We characterize these transitions and the relative stability of the solutions and we show that the two interactions conspire to stabilize the quarter-filled charge-ordered phase.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.